A Fourier transform method for nonparametric estimation of multivariate volatility
نویسنده
چکیده
We provide a nonparametric method for the computation of instantaneous multivariate volatility for continuous semi-martingales, which is based on Fourier analysis. The co-volatility is reconstructed as a stochastic function of time by establishing a connection between the Fourier transform of the prices process and the Fourier transform of the co-volatility process. A nonparametric estimator is derived given a discrete unevenly spaced and asynchronously sampled observations of the asset price processes. The asymptotic properties of the random estimator are studied: namely, consistency in probability uniformly in time and convergence in law to a mixture of Gaussian distributions.
منابع مشابه
Multivariate Nonparametric Volatility Density Estimation
We consider a continuous-time stochastic volatility model. The model contains a stationary volatility process, the multivariate density of the finite dimensional distributions of which we aim to estimate. We assume that we observe the process at discrete instants in time. The sampling times will be equidistant with vanishing distance. A multivariate Fourier-type deconvolution kernel density est...
متن کاملWeak limit theorems in the Fourier transform method for the estimation of multivariate volatility
In this paper, we prove some weak limit theorems for the Fourier estimator of multivariate volatility proposed by Malliavin and Mancino ( [12], [13]). We first give a central limit theorem for the estimator of the integrated volatility assuming that we observe the whole path of the Ito process. Then we study the case of discrete time observations possibly non synchronous. In this framework we p...
متن کاملNonparametric volatility density estimation for discrete time models
We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier type deconvolution kernel density estimator based on the logarithm of the squared process is proposed to estimate the volatility density. Expansions of the bias and bounds on the variance are derived.
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملNonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates
We develop a nonparametric specification test for continuous-time models using the transition density. Using a data transform and correcting for the boundary bias of kernel estimators, our test is robust to serial dependence in data and provides excellent finite sample performance. Besides univariate diffusion models, our test is applicable to a wide variety of continuous-time and discrete-time...
متن کامل